Functional Relationships between Genes Associated with Differentiation Potential of Aged Myogenic Progenitors
نویسندگان
چکیده
Aging is accompanied by considerable heterogeneity with possible co-expression of differentiation pathways. The present study investigates the interplay between crucial myogenic, adipogenic, and Wnt-related genes orchestrating aged myogenic progenitor differentiation (AMPD) using clonal gene expression profiling in conjunction with Bayesian structure learning (BSL) techniques. The expression of three myogenic regulatory factor genes (Myogenin, Myf-5, MyoD1), four genes involved in regulating adipogenic potential (C/EBPα, DDIT3, FoxC2, PPARγ), and two genes in the Wnt signaling pathway (Lrp5, Wnt5a) known to influence both differentiation programs were determined across 34 clones by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Three control genes were used for normalization of the clonal expression data (18S, GAPDH, and B2M). Constraint-based BSL techniques, namely (a) PC Algorithm, (b) Grow-shrink (GS) algorithm, and (c) Incremental Association Markov Blanket (IAMB) were used to model the functional relationships (FRs) in the form of acyclic networks from the clonal expression profiles. A novel resampling approach that obviates the need for a user-defined confidence threshold is proposed to identify statistically significant FRs at small sample sizes. Interestingly, the resulting acyclic network consisted of FRs corresponding to myogenic, adipogenic, Wnt-related genes and their interaction. A significant number of these FRs were robust to normalization across the three house-keeping genes and the choice of the BSL technique. The results presented elucidate the delicate balance between differentiation pathways (i.e., myogenic as well as adipogenic) and possible cross-talk between pathways in AMPD.
منابع مشابه
Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration
Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expressio...
متن کاملIsolation and Transcriptome Analysis of Adult Zebrafish Cells Enriched for Skeletal Muscle Progenitors
INTRODUCTION Over the past 10 years, the use of zebrafish for scientific research in the area of muscle development has increased dramatically. Although several protocols exist for the isolation of adult myoblast progenitors from larger fish, no standardized protocol exists for the isolation of myogenic progenitors from adult zebrafish muscle. METHODS Using a variant of a mammalian myoblast i...
متن کاملExpression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation
Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD), a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed du...
متن کاملThe role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells.
Characterization of myogenic subpopulations has traditionally been performed independently of their functional performance following transplantation. Using the preplate technique, which separates cells based on their variable adhesion characteristics, we investigated the use of cell surface proteins to potentially identify progenitors with enhanced regeneration capabilities. Based on previous s...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کامل